Answer:
1.76m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 65m/s
Distance traveled = 1200m
Unknown:
Acceleration = ?
Solution:
This is linear velocity and we apply the appropriate motion equation to solve this problem.
V² = U² + 2as
S is the distance
u is the initial velocity
V is the final velocity
a is the acceleration
Now, insert the parameters and solve;
65² = 0² + 2 x a x 1200
4225 = 2400a
a = 1.76m/s²
Answer:
The answer is C!!!!!!!
Becuz meters and seconds are derived into m/s²
Explanation:
Plss follow me and Mark as brainlest
Thanks :-)
A supernova is a star that suddenly increases greatly in brightness because of a catastrophic explosion that ejects most of its mass.
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
Answer:
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m.
Explanation:
The Coulomb force between two charges,
and
, separated by a distance,
, is given

<em>k</em> is a constant.
For the charge Z to be at equilibrium, the force exerted on it by charge X must be equal and opposite to the force exerted on it by charge Y.
It is to be placed along the <em>x</em>-axis. Hence, it is on the same line as charges X and Y.
Let the charge on Z be <em>Q</em>. It is positive.
Let the distance from charge X be <em>x m.</em> Then the distance from charge Y will be (0.60 - <em>x</em>) m.
Force due to charge X

Force due to charge Y

Since both forces are equal and opposite,







Applying the quadratic formula,

or 
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m