Perpendicular = opposite sign and reciprocal slope
Slope 2 turns into -1/2
Y = -1/2x + b
Plug in the point
-5 = -1/2(2) + b, b = -4
Solution: y = -1/2x - 4
![\bf \begin{cases} f(x)=\sqrt[3]{7x-2}\\\\ g(x)=\cfrac{x^3+2}{7} \end{cases}\\\\ -----------------------------\\\\ now \\\\ f[\ g(x)\ ]\implies f\left[ \frac{x^3+2}{7} \right]\implies \sqrt[3]{7\left[ \frac{x^3+2}{7} \right]-2}\implies \sqrt[3]{x^3+2-2} \\\\\\ \sqrt[3]{x^3}\implies x\\\\ -----------------------------\\\\ or \\\\ g[\ f(x)\ ]\implies g\left[\sqrt[3]{7x-2}\right]\implies \cfrac{\left[\sqrt[3]{7x-2}\right]^3+2}{7} \\\\\\ \cfrac{7x-2+2}{7}\implies \cfrac{7x}{7}\implies x](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Af%28x%29%3D%5Csqrt%5B3%5D%7B7x-2%7D%5C%5C%5C%5C%0Ag%28x%29%3D%5Ccfrac%7Bx%5E3%2B2%7D%7B7%7D%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Anow%0A%5C%5C%5C%5C%0Af%5B%5C%20g%28x%29%5C%20%5D%5Cimplies%20f%5Cleft%5B%20%5Cfrac%7Bx%5E3%2B2%7D%7B7%7D%20%5Cright%5D%5Cimplies%20%5Csqrt%5B3%5D%7B7%5Cleft%5B%20%5Cfrac%7Bx%5E3%2B2%7D%7B7%7D%20%5Cright%5D-2%7D%5Cimplies%20%5Csqrt%5B3%5D%7Bx%5E3%2B2-2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7Bx%5E3%7D%5Cimplies%20x%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Aor%0A%5C%5C%5C%5C%0Ag%5B%5C%20f%28x%29%5C%20%5D%5Cimplies%20g%5Cleft%5B%5Csqrt%5B3%5D%7B7x-2%7D%5Cright%5D%5Cimplies%20%5Ccfrac%7B%5Cleft%5B%5Csqrt%5B3%5D%7B7x-2%7D%5Cright%5D%5E3%2B2%7D%7B7%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B7x-2%2B2%7D%7B7%7D%5Cimplies%20%5Ccfrac%7B7x%7D%7B7%7D%5Cimplies%20x)
thus f[ g(x) ] = x indeed, or g[ f(x) ] =x, thus they're indeed inverse of each other
Answer:



Step-by-step explanation:
Number of Men, n(M)=24
Number of Women, n(W)=3
Total Sample, n(S)=24+3=27
Since you cannot appoint the same person twice, the probabilities are <u>without replacement.</u>
(a)Probability that both appointees are men.

(b)Probability that one man and one woman are appointed.
To find the probability that one man and one woman are appointed, this could happen in two ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
P(One man and one woman are appointed)

(c)Probability that at least one woman is appointed.
The probability that at least one woman is appointed can occur in three ways.
- A man is appointed first and a woman is appointed next.
- A woman is appointed first and a man is appointed next.
- Two women are appointed
P(at least one woman is appointed)

In Part B, 
Therefore:

For 175 : 250 divide them both by 25 to get

<

25 goes into 175 > 7 times > 25 into 250 is 10 times! >

For the second one 16 : 40 just divide the top and bottom by 8 since 8 is a common factor of both which will give us

.
8 goes into 16, 2 times and 40, 5 times.
Simply add the hours worked together to find the total, so 4.5+8.75+9.5+10+4.25= your answer.