Answer:
45200J
Explanation:
Given parameters:
Heat of vaporization of water = 2260J/g
Mass of steam = 20g
Temperature = 100°C
Unknown:
Energy released during the condensation = ?
Solution:
This change is a phase change and there is no change in temperature
To find the amount of heat released;
H = mL
m is the mass
L is the latent heat of vaporization
Insert the parameters and solve;
H = 20g x 2260J/g
H = 45200J
Well you have to minus the 4.5 to 5.2 and the answer to that would be -11.5 and calculated that to be 4.5
Answer:
100,800 Jkg
The heat that is used to change the state of a mater is called latent heat.
In this case it is converting ice to water and it is called latent heat of fusion.
It is given by:
Heat = mc
where m is the mass of ice and l is the specific latent heat of fusion of ice.
l = 0.336 MJ
Heat = 0.3 × 0.336 MJ
= 0.3 × 0.336 × 10⁶
= 100,800 Jkg
The bimetallic strip in a fire alarm is made of two metals with different expansion rates bonded together to form one piece of metal. Typically, the low-expansion side is made of a nickel-iron alloy called Invar, while the high-expansion side is an alloy of copper or nickel. The strip is electrically energized with a low-voltage current. When the strip is heated by fire, the high-expansion side bends the strip toward an electrical contact. When the strip touches that contact, it completes a circuit that triggers the alarm to sound. The width of the gap between the contacts determines the temperature that will set off the alarm.
The answer is Decibels. <span />