Answer:
P =18760.5 Pa
Explanation:
Given that
Volume ,V= 0.0434 m³
Mass ,m= 4.19 g = 0.00419 kg
T= 417 K
If we assume that water vapor is behaving like a ideal gas ,then we can use ideal gas equation
Ideal gas equation P V = m R T
p=Pressure ,V = Volume ,m =mass
T=Temperature ,R=Universal gas constant
Now by putting the values
P V = m R T
For water R= 0.466 KJ/kgK
P x 0.0434 = 0.00419 x 0.466 x 417
P =18.7605 KPa
P =18760.5 Pa
Therefore the answer is 18760.5 Pa
Answer:
Young's modulus for the rope material is 20.8 MPa.
Explanation:
The Young's modulus is given by:

Where:
F: is the force applied on the wire
L₀: is the initial length of the wire = 3.1 m
A: is the cross-section area of the wire
ΔL: is the change in the length = 0.17 m
The cross-section area of the wire is given by the area of a circle:

Now we need to find the force applied on the wire. Since the wire is lifting an object, the force is equal to the tension of the wire as follows:

Where:
: is the tension of the wire
: is the weigh of the object = mg
m: is the mass of the object = 1700 kg
g: is the acceleration due to gravity = 9.81 m/s²

Hence, the Young's modulus is:
Therefore, Young's modulus for the rope material is 20.8 MPa.
I hope it helps you!
Answer:
Yes
Explanation:
The speed of light when it travels through glass, diamond, etc, the light travels at different speed from the speed of light. Speed of the light in material is related to the index of refraction.
The change in speed which occurs when the light passes from one medium to the another is responsible for bending of the light which is called as refraction.
<u>When the light goes into a medium with the higher index of the refraction, light bends towards normal. Conversely, if the light traveling goes from higher refractive index to lower refractive index, it will bend away from the normal.
</u>
<u>Hence, the refraction is different in both the scenario.</u>
Answer:
<h3>4905N</h3>
Explanation:
The force needed to keep the elephant from slowing down is expressed as shown according to Newtons second law of motion.
Force = mass * acceleration due to gravity
Given
Mass of elephant = 500kg
acceleration due to gravity = 9.81m/s²
Force = 500*9.81
Force = 4905N
<em>Hence the force needed to keep the elephant from slowing down is 4905N</em>
11/23/2012 - 2.2 mag, 5.0mi depth 1.0875 mi from <span>Gloucester Township, NJ
</span>