Answer:
Explanation:
Given
mass of lumber jack 
mass of floating log 
velocity of lumber jack =3.74 m/s (w.r.t. shore)
conserving momentum
Initial momentum=Final momentum



(b)For second Log
Conserving Momentum
Initial momentum of log and Lumber jack=Final momentum of log and lumberjack

u is final velocity of lumberjack and log


Answer:
13 km/h
Explanation:
Average speed = distance/time
Let the total distance and total time taken for the whole trip be d km and t hours respectively
Average speed for the whole trip = 82 km/h
d = 82t
The distance covered in the first half = d1/2
Time taken = t/2
Average speed = 69 km/h
69 = d1/2 ÷ t/2
d1 = 69t
The distance covered in the second half = d2/2
Time taken = t/2
Let the average sly for the see half be A
A = d2/2 ÷ t/2
d2 = At
d = d1 + d2
82t = 69t + At
At = 82t - 69t
At = 13t
A = 13t/t = 13 km/h
Answer:
Explanation:
Since the equation for the illumination of an object, i.e. the brightness of the light, is <em>inversely proportional to the square of the distance from the light source</em>, the form of the function is:
Where x is the distance between the object and the light force, k is the constant of proportionality, and f(x) is the brightness.
Then, if you move halfway to the lamp the new distance is x/2 and the new brightness (call if F) is :

Then, you have found that the light is 4 times as bright as it originally was.