We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
First, we need to determine the required moles of CaCl₂. We have 500 mL (0.500 L) of a 0.360 M solution (0.360 moles of CaCl₂ per liter of solution).

Then, we will convert 0.180 moles to grams using the molar mass of CaCl₂ (110.98 g/mol).

To prepare the solution, we weigh 20.0 g of CaCl₂ and add it to a beaker with enough distilled water to dissolve it. We stir it, heat it if necessary, and when we have a solution, we transfer it to a 500 mL flask and complete it to the mark with distilled water.
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
You can learn more about solutions here: brainly.com/question/2412491
When a bond is broken that should be a type of reaction. When bonds are broken sometimes heat is released.
Answer:
To calculate molarity, divide the number of moles of solute by the volume of the solution in liters. If you don't know the number of moles of solute but you know the mass, start by finding the molar mass of the solute, which is equal to all of the molar masses of each element in the solution added together.
Explanation:
try starting with 35.0 and dived it by the volume
Answer:
V KOH = 41 mL
Explanation:
for neutralization:
- ( V×<em>C </em>)acid = ( V×<em>C </em>)base
∴ <em>C </em>H2SO4 = 0.0050 M = 0.0050 mol/L
∴ V H2SO4 = 41 mL = 0.041 L
∴ <em>C</em> KOH = 0.0050 N = 0.0050 eq-g/L
∴ E KOH = 1 eq-g/mol
⇒ <em>C</em> KOH = (0.0050 eq-g/L)×(mol KOH/1 eq-g) = 0.0050 mol/L
⇒ V KOH = ( V×<em>C </em>) acid / <em>C </em>KOH
⇒ V KOH = (0.041 L)(0.0050 mol/L) / (0.0050 mol/L)
⇒ V KOH = 0.041 L
The position is the strength of the magnetic field strongest is is the place where the magnetic field leaves, being point A.
<h3>What generates a magnetic field?</h3>
When an electrically charged particle moves, it creates a magnetic field. According to the laws of electromagnetism, this magnetic field originates from the variation of the electric field strength.
In the region of the poles we see that the lines of magnetic induction are closer to each other, therefore, we consider that close to the poles the magnetic field is more intense.
See more about magentic field at brainly.com/question/14848188
#SPJ1