They gain energy , it also allows plants to create organic molecules that they use as fuel.
Answer:
SO₂ + 0.5 O₂ + H₂O → H₂SO₄
3.83 g
Explanation:
In the formation of acid rain, sulfur dioxide reacts with oxygen and water in the air to form sulfuric acid. The balanced chemical equation is:
SO₂ + 0.5 O₂ + H₂O → H₂SO₄
The molar mass of SO₂ is 64.07 g/mol. The moles of SO₂ corresponding to 2.50 g are:
2.50 g × (1 mol/64.07 g) = 0.0390 mol
The molar ratio of SO₂ to H₂SO₄ is 1:1. The moles of H₂SO₄ formed are 0.0390 moles.
The molar mass of H₂SO₄ is 98.08 g/mol. The mass of H₂SO₄ is:
0.0390 mol × 98.08 g/mol = 3.83 g
Answer: Option (c) is the correct answer.
Explanation:
In liquids, molecules are held by slightly less strong intermolecular forces of attraction as compared to solids.
Hence, molecules of a liquid are able to slide past each other as they have more kinetic energy than the molecules of a solid.
As a result, liquids are able to occupy the shape of container in which they are placed. Also, liquids have fixed volume but no fixed shape.
Thus, we can conclude that liquids have a variable shape and a fixed volume.
Answer:
Nickel and Titanium
Explanation:
Nitinol is an alloy of Nickel and Titanium. It posesses two properties such that,
- The shape memory effect
- Super elasticity
Shape memory is the ability of nitinol to undergo deformation at one temperature, stay in its deformed shape when the external force is removed.
Superelasticity is the ability for the metal to undergo large deformations and immediately return to its undeformed shape upon removal of the external load.
Hence, the correct option is (b) "Nickel and Titanium".
The formula to calculate osmotic pressure is
Osmotic Pressure = M R T
M = Molarity
R = Ideal Gas Constant
T = Temperature in Kelvin
So,
24.6/.2254kg=109.139g /kg >>>>> Molarity
109.139 x mols/92 g = 1.186 mols kg^-1
1.186 x 0.08134 x 298 K = 28.755 atm
<span>1.06852 x 0.08134 x 298K= 26.5 atm
The answer is 26.5</span>