<h3>You will pay $ 30876800</h3>
We'll begin by calculating the mass in ounce (oz) of a cube foot (ft³) of gold. This can be obtained as follow:
<h3 />
Density of gold = 19298 oz/ft³
Volume of gold = 1 ft³
<h3>Mass of gold =?</h3>
Density = mass /volume
19298 = mass / 1
<h3>Mass of gold = 19298 oz</h3>
Finally, we shall determine the cost of 19298 oz of gold. This can be obtained as follow:
1 oz = $ 1600
Therefore,
19298 oz = 19298 × 1600
19298 oz = $ 30876800
Therefore, a solid cube foot of gold (i.e 19298 oz) will cost $ 30876800
Learn more: brainly.com/question/15407624
Answer: heck the chemistry app itll help you i dont know this answer but the app will tell u!
It's simple, just follow my steps.
1º - in 1 L we have

of

2º - let's find the number of moles.



3º - The concentration will be

But we have this reaction

This concentration will be the concentration of

![K_{sp}=\frac{[Ba^{2+}][CO_3^{2-}]}{[BaCO_3]}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cfrac%7B%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BBaCO_3%5D%7D)
considering
![[BaCO_3]=1~mol/L](https://tex.z-dn.net/?f=%5BBaCO_3%5D%3D1~mol%2FL)
![K_{sp}=[Ba^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
and
![[Ba^{2+}]=[CO_3^{2-}]=5.07\times10^{-5}~mol/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO_3%5E%7B2-%7D%5D%3D5.07%5Ctimes10%5E%7B-5%7D~mol%2FL)
We can replace it


Therefore the

is:
Answer:
2l- ---> l2 + 2e- is the anode
2H+ + 2e- ---> H2(g) is the cathode
Explanation:
Oxidation occurs when a metal loses two or more electrons in a redox chemical reaction and reduction is when it gains. Thus, oxidation is the anode and reduction is the cathode.
Answer:
The Aufbau Principle simply helps us determine electron configuration of an atom by stating that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy level, then they fill subshells of higher energy level. For example, the 1s subshell is filled before the 2s subshell is occupied. Now, when trying to figure out the electron configuration of a calcium, you need to know its atomic number to determine its amount of total electrons. Calcium has an atomic number of 20, which means it has 20 protons and 20 electrons. First remember that the "s" subshell only holds 2 electrons, the "p" subshell only hold 6 electrons, and the "d" subshell only holds up to 10 electrons. Using the Aufbau principle below, we can determine that the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s is now full we'll move to the 3p where we'll place the next six electrons. We now go to the 4s orbital where we place the remaining two electrons. With this, the calcium electron configuration will be:

Hope that helps you understand!