Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>
Answer: The products formed in this Bronsted-Lowry reaction are
and
.
Explanation:
According to Bronsted-Lowry, acids are the species which donate hydrogen ions to another specie in a chemical reaction.
Bases are the species which accept a hydrogen ion upon chemical reaction.
For example, 
Here, the products formed in this Bronsted-Lowry reaction are
and
.
Thus, we can conclude that the products formed in this Bronsted-Lowry reaction are
and
.
6.4mole•64.06g/1mole=409.98g
Instability of an atoms nucleus can result from an excess of either neutrons or protons . So neutrons and protons .