A good example is the mineral<span> plagioclase. Plagioclase is a member of the feldspar group, but </span>there<span> is more than one type of plagioclase.</span>
Here I found some info at Yahoo answers: https://answers.yahoo.com/question/index?qid=20090119191941AAB7oAb
The more electronegative an atom is the more unwilling it is to lose its electrons in a compound. If you do try to take a very EN atom away from a compound you'll need to apply a lot of energy for that to happen. I can give an example of a single atom though
<span>Cl has 7 valence electron filled and every atom wants to be like nobles (noble gases), so it's not going to give an electron away b/c it's really close to being like a noble gas. Noble gases are the most stable atoms, which is why I say stability counts.</span>
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.
The two atoms shown in the equation are CALCIUM and oxygen.
<span>You start off with a neutral calcium atom with a shell of two electrons, a shell of 8 around that, a shell of 8 around that, and a shell containing 2...with no charge. </span>
<span>20 protons + 20 electrons. </span>
<span>You also have an oxygen atom with a shell of 2, and a shell of 6...with no charge. </span>
<span>8 protons + 8 electrons. </span>
<span>Each ionizes to form a calcium ion with 2 electrons removed (from the outer shell), leaving a +2 charge (20 protons, 18 electrons)... </span>
<span>and an oxygen ion with 2 electrons added (to the outer shell), leaving a -2 charge (8 protons, 10 electrons). </span>
<span>Their electrostatic attraction causes them to come together to form an ionic compound of CaO in a crystal lattice.</span>
Answer:
1 mole of sodium chloride ions
Explanation:
i hope this answer helps u
plz mark me as brainliest