Gravity affects weight of an object
Its weight reduces as it moves away from the center as gravity is strongest near the core and reduces as you move away
Hope this helps C:
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
Explanation:
charge, q = 1.6 x 10^-19 C
distance, r = 911 nm = 911 x 10^-9 m
The Coulomb's force is given by
F = 2.78 x 10^-16 N
The force between the electron and the proton is 2.78 x 10^-16 N.
The last choice. Two arrows and the arrow up is shorter than the arrow down. Since the guy is falling and he’s opened his chute, he’s slowing down but he’s still falling meaning the force of gravity is stronger than the air resistance.
Let the data is as following
mass of payload = "m"
mass of Moon = "M"
now we know that we place the payload from the position on the surface of moon to the position of 5r from the surface
So in this case we can say that change in the gravitational potential energy is equal to the work done to move the mass from one position to other
so it is given by
we know that
now from above formula
so above is the work done to move the mass from surface to given altitude