Answer:
r = 2.55 m
Explanation:
Given that,
First charge, q₁ = 32.2 μC
Second charge, q₂ = + 12.3 μC
The force between charges, F = 0.544 N
We need to find the distance between charges. The force between two charges is given by the formula as follows :

So, the charges are 2.55 m apart.
Answer:
2.9
Explanation:
average speed=distance/time taken
=2/5.8
=2.9
I. Positive acceleration increases velocity. Negative acceleration decreases velocity. runner A sped up until the finish line and then slowed to a stop.
ii. Zero a acceleration implies a constant, unchanging velocity not a zero velocity. runner B achieved some velocity prior to 8s and is moving and must slow down to reach a stop.
iii. None. No aspects of this reasoning are correct. Everything she says is wrong. See iv for what/why.
iv. The sign on acceleration denotes the direction of *change in velocity* not change in direction. The sign on velocity can denote change in direction but only “forward” or “reverse” along a particular path. Cardinal direction is not indicated, generally, by the sign on velocity. It may correspond to North/South situationally but it is not an built-in feature of velocity and its sign. For example, if you are traveling with positive velocity and turn left to continue your journey you still have a positive velocity in the new direction. In fact, if you turn left again, traveling in the opposite direction as the one you started with your velocity would still be positive… in the new direction. The velocity relative to original direction could be said to be negative but that would be a confusing way to describe a journey. Maybe if you stopped the vehicle and moved in reverse, you could meaningfully say velocity was negative.
Answer:
The final velocity of the race car is 27.14 m/s
Explanation:
Given;
initial velocity of the race car, u = 18.5 m/s
acceleration of the race car, a = 2.47 m/s²
distance covered by the race car, s = 79.78 m
Apply the following kinematic equation to determine the final velocity of the race car.
v² = u² + 2as
v² = (18.5)² + 2(2.47)(79.78)
v² = 736.363
v = √736.363
v = 27.14 m/s
Therefore, the final velocity of the racecar is 27.14 m/s
Answer:
well for C the horse is at rest at 10 to 15
D is 0 to 10
E is 15 to 25
Explanation:
If you search up examples it will help with this worksheet.
If I am work then I appologize