Answer:
The correct answer is inertia.
Explanation:
The heavy bag of groceries is initially within the inertia frame of the car. This indicates that the heavy bag acquires the same speed as the car.
When the car stops, the heavy bag continues to move forward with the speed it had due to the principle of inertia, which states the property that the bodies cannot modify by themselves the state of rest or movement in which they are.
Have a nice day!
Answer:
Bowling Ball: weight on Earth = 49 N
Textbook: Mass = 2 kg; weight on the moon = 3.2 N
Large dog: weight on Earth = 490 N; weight on the moon = 80 N
Law of Universal Gravitation: 
= gravitational force (Newtons/N)
<em>G</em> = gravitational constant, 6.67430 × 10¹¹ 
<em>m</em>₁ and <em>m</em>₂ = masses of two objects (kilograms/kg)
<em>r</em>² = square of distance between centers of the two objects (meters/m)
Have a fantastic day!
I say around 40% - 60%
https://www.dmv.ca.gov/portal/dmv/detail/teenweb/more_btn6/traffic/traffic
http://www.teendriversource.org/stats/support_teens/detail/57
http://www.rmiia.org/auto/teens/Teen_Driving_Statistics.asp
(I just corrected the question. Sorry if it is still incorrect.)
<h3>Solution for the above question : -</h3>
Ohm's law states that :
the terms used are :
let's solve for electric current :

<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 