3x - 4(4) = 65
First, simplify 4 × 4 to get 16. / Your problem should look like: 3x - 16 = 65
Second, add 16 to both sides. / Your problem should look like: 3x = 65 + 16
Third, simplify 65 + 16 to 81. / Your problem should look like: 3x = 81
Fourth, divide both sides by 3. / Your problem should look like: x =
Fifth, simplify

to 27. / Your problem should look like: x = 27
Answer:
x = 27
Answer:

Step-by-step explanation:
GIVEN: A farmer has
of fencing to construct a rectangular pen up against the straight side of a barn, using the barn for one side of the pen. The length of the barn is
.
TO FIND: Determine the dimensions of the rectangle of maximum area that can be enclosed under these conditions.
SOLUTION:
Let the length of rectangle be
and
perimeter of rectangular pen 


area of rectangular pen 

putting value of 


to maximize 



but the dimensions must be lesser or equal to than that of barn.
therefore maximum length rectangular pen 
width of rectangular pen 
Maximum area of rectangular pen 
Hence maximum area of rectangular pen is
and dimensions are 
I believe x=2 because 6x=2x+8
Answer:
- 20
Step-by-step explanation:
Total Change in enrollment = - 60
Period of time at which change occurred = 3 years
Average change per year :
Total change in enrollment / period at which change occurred
= - 60 / 3
= - 20
Average change of - 20 enrollments per year
Your answer is y=-3/4x+7 because when you find rise over run it's -9/8 which rounds down to -3/4 which is your slope and 7 is the