Protection, regulation, and sensation are functions of the skin.
Hope it helps!
Explanation:
<u>anaerobic process that restores NAD+ supply</u>
<u></u>
Within cells, aerobic respiration may not occur due to several factors:
- - a lack of inorganic, final electron acceptors
- -incomplete or lack of a complete electron transport system
- -missing genes for enzymes within the Kreb's cycle
Thus, they utilize other means for the generation of energy in the form of ATP and to replenish NAD+ an oxidized form of NADH, the main electron carrier in glycolysis. Pyruvate is produced in the cytoplasm via glycolysis- it is also used as an electron acceptor in a process called fermentation.
Further Explanation:
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
Lingual lipase starts the digestion of the lipids/fats. Salivary amylase<span>: Carbohydrate digestion also initiates in the mouth. </span>Amylase<span>, produced by the </span>salivary<span> glands, breaks complex carbohydrates to smaller chains, or even simple sugars. It is sometimes referred to as ptyalin.</span>
This process is called osmosis whereby water exits the cell through its selectively permeable membrane and into the salt solution to dilute and balance the pressure caused by the concentrated salt solution.
The extracellular glucose inhibit transcription of the lac operon (D) by reducing the levels of intracellular cAMP.
Lac operon is the assembly of various genes that are involved in the uptake and metabolism of lactose of E. coli or any other bacteria. It consists of a regulator gene, promoter gene, operator and structural gene. Structural genes are three: z, y and a. Each codes for a different enzyme.
cAMP is the cyclic Adenosine Monophosphate. It is produced by the bacteria when there are low levels of glucose in it. Hence it is also named as hunger signals. Therefore, cAMP is responsible for activating the operon to produce lactose.
To know more about cAMP, here
brainly.com/question/13794408
#SPJ4