Answer:
C
Step-by-step explanation:
(2x + 3)^5 = C(5,0)2x^5*3^0 +
C(5,1)2x^4*3^1 + C(5,2)2x^3*3^2 + C(5,3)2x^2*3^3 + C(5,4)2x^1*3^4 + C(5,5)2x^0*3^5
Recall that
C(n,r) = n! / (n-r)! r!
C(5,0) = 1
C(5,1) = 5
C(5,2) = 10
C(5,3) = 10
C(5,4) = 5
C(5,5) = 1
= 1(2x^5)1 + 5(2x^4)3 + 10(2x^3)3^2 + 10(2x^2)3^3 + 5(2x^1)3^4 + 1(2x^0)3^5
= 2x^5 + 15(2x^4) + 90(2x^3) + 270(2x^2) + 405(2x) +243
= 32x^5 + 15(16x^4) + 90(8x^3) + 270(4x^2) + 810x + 243
= 32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243
Answer:
<h2>The answer is 58 m</h2>
Step-by-step explanation:
Perimeter of a rectangle = 2l + 2w
where
l is the length
w is the width
From the question
length = 17 m
width = 12 m
Substitute the values into the above formula and solve for the perimeter
We have
Perimeter = 2(17) + 2(12)
= 34 + 24
We have the final answer as
<h3>58 m</h3>
Hope this helps you
I'll start 18 and 22 for you, and you should then be able to do the rest on your own!
For 18, what we literally do is apply the distance formula for all the points and add them up. For B to C, we get the distance between them to be
sqrt((x1-x2)^2+(y1-y2)^2)=sqrt((0-4)^2+(3-(-1))^2)=sqrt((-4)^2+4^2)=sqrt(16+16)=sqrt(32). Repeat the process for C to E, E and F, and F to B then add the results up to get your answer!
For 22, since the area of a rectangle is length*width (we know given the right angles and that the opposite sides are equal in how long they are), we can multiply 2 perpendicular lines, for example, BC and CE to get sqrt(32)*sqrt(8)=16 as the area
Answer:
true 7x+5y=9
Step-by-step explanation:
Step-by-step explanation:
-2, -8/3, -10/3, -4, -14/3
Write as multiples of 1/3.
-6/3, -8/3, -10/3, -12/3, -14/3
This is an arithmetic sequence where the first term is -6/3 and the common difference is -2/3.
Therefore, the recursive formula is:
aᵢ₊₁ = aᵢ − 2/3, a₁ = -2