Answer:
Explanation:
a )
momentum of baseball before collision
mass x velocity
= .145 x 30.5
= 4.4225 kg m /s
momentum of brick after collision
= 5.75 x 1.1
= 6.325 kg m/s
Applying conservation of momentum
4.4225 + 0 = .145 x v + 6.325 , v is velocity of baseball after collision.
v = - 13.12 m / s
b )
kinetic energy of baseball before collision = 1/2 mv²
= .5 x .145 x 30.5²
= 67.44 J
Total kinetic energy before collision = 67.44 J
c )
kinetic energy of baseball after collision = 1/2 x .145 x 13.12²
= 12.48 J .
kinetic energy of brick after collision
= .5 x 5.75 x 1.1²
= 3.48 J
Total kinetic energy after collision
= 15.96 J
The power delivered is equal to the product between the voltage V and the current I:

This power is delivered for a total time of

, so the total energy delivered to the battery is
not enough information is given to determine the velocity of the object at time to=0.00s
This question involves the concepts of orbital velocity and orbital radius.
The orbital velocity of ISS must be "7660.25 m/s".
The orbital velocity of the ISS can be given by the following formula:

where,
v = orbital velocity = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Earth = 5.97 x 10²⁴ kg
R = orbital radius = radius of earth + altitude = 63.78 x 10⁵ m + 4.08 x 10⁵ m
R = 67.86 x 10⁵ m
Therefore,

<u>v = 7660.25 m/s</u>
Learn more about orbital velocity here:
brainly.com/question/541239
I think is a high-pressure system because it is only in one particular area.