Explanation:
As the given spheres are connected by a thin wire so, the potential on the spheres are the same.
......... (1)
Hence, total charge will be as follows.
= Q = -95.5 nC .......... (2)
Using the above two equations, the final equation will be as follows.

and, 
Hence, we will calculate the charge on sphere B after the equilibrium is reached as follows.

= 
= 82.714 nC
Thus, we can conclude that the charge on sphere B after equilibrium has been reached is 82.714 nC.
Answer:
(iv), (v), (vi) would be incorrect.
Explanation:
(iv) Force isn't transferred from one colliding object to another, but momentum can be.
(v) An object doesn't stop immediately a force stops acting on it. Think of a thrown ball.
(vi) For an object not to move, it means that the net force on the object is zero, and not necessarily that there are no forces acting on the object. For example, an object could be pushed on one side, and be pushed on the other side with an equal force in the opposite direction. The forces would cancel each other and the net force would be zero.
The rest should be correct.
Answer:
1.24 x 10 to the 5 ev = 124,000 ev its B
Explanation:
E = hc/lambda = 1.24 ev-micrometer/1.0x10 to the -5 micrometers = 1.24 x 10 to the 5 ev = 124,000 ev
h = Planck's constant = 6.626 × 10 to the -34 joule·s
c = speed of light = 2.998 × 10 to the 8 m/s
lambda is the given wavelength
E is the desired photon energy