As we know that

here we know that


now by the above formula we will have



Answer : The mass of a sample of water is, 888.89 grams
Explanation :
Latent heat of vaporization : It is defined as the amount of heat energy released or absorbed when the liquid converted to vapor at atmospheric pressure at its boiling point.
Formula used :

where,
q = heat = 2000 kJ =
(1 kJ = 1000 J)
L = latent heat of vaporization of water = 
m = mass of sample of water = ?
Now put all the given values in the above formula, we get:

(1 kg = 1000 g)
Therefore, the mass of a sample of water is, 888.89 grams
Answer:
Gravity always attracts. Magnetism either attracts or repel. Gravity reacts to mass or space. Magnetism reacts to motion
Answer:
Vf = 41.6 [m/s].
Explanation:
To solve this problem we must use the equations of kinematics.
Vf² = Vo² + (2*g*y)
where:
Vf = final velocity [m/s]
Vo = initial velocity = 0
g = gravity acceleration = 9.81 [m/s²]
y = height = 88.2 [m]
Note: The positive sign of the equation tells us that the acceleration of gravity goes in the direction of motion.
Vf² = Vo² + (2*g*y)
Vf² = 0 + (2*9.81*88.2)
Vf = (1730.48)^0.5
Vf = 41.6 [m/s]
The answer is Newton's 3rd Law. The reason why is because a force is a push or a pull that acts upon an object as a results of its interaction with another object. ... These two forces are called action and reaction forces and are the subject ofNewton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction.