A car acting as an object in front of a biconvex lens between F and 2 F on the object side of the lens. There is a light ray parallel to the principal axis that is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect below the x axis further than 2 F away from the lens and farther from the principal axis than the object is tall.
<u> The image produced by the lens is (b) inverted and real</u>
Explanation:
A real image occurs where the rays converge.
Real images can be produced both by the concave mirrors or converging lenses, but the condition is that the object of consideration is always placed far away from the mirror or the lens than the focal point, and thus the real image produced is inverted.
A car acting as an object in front of a biconvex lens between F and 2 F on the object side of the lens. There is a light ray parallel to the principal axis that is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect below the x axis further than 2 F away from the lens and farther from the principal axis than the object is tall.
<u> The image produced by the lens is (b) inverted and real</u>
Answer:
Part a)
Final speed of the corn is 19.05 m/s
Part b)
Kinetic energy of the corn is 3.1 J
Explanation:
Part a)
As we know that the initial position of the corn is
h = 18.5 m
now we also know that it will fall from rest and moving under constant acceleration so we will have



Part b)
Kinetic energy of the corn is given as



Answer:
he diameter of the oil slick is 2523 m
Explanation:
given information?
V = 1 L = 1000 cm³ = 0.001 m³
h = 2 x 10⁻¹⁰ m
first we have to find the radius using the following equation
V = πr²h
r = √V/(πh)
= √(0.001)/(π x 2 x 10⁻¹⁰ )
= 1261.56 m
now, we can calculate the diameter of the oil slick
d = 2r
= 2 (1261.56)
= 2523 m