The answer to this question is:
A circle is growing so that the radius is increasing at the rate of 2cm/min. How fast is the area of the circle changing at the instant the radius is 10cm? Include units in your answer.?
✔️I assume here the linear scale is changing at the rato of 5cm/min
✔️dR/dt=5(cm/min) (R - is the radius.... yrs, of the circle (not the side)
✔️The rate of area change would be d(pi*R^2)/dt=2pi*R*dR/dt.
✔️At the instant when R=20cm,this rate would be,
✔️2pi*20*5(cm^2/min)=200pi (cm^2/min) or, almost, 628 (cm^2/min)
Hoped This Helped, <span>Cello10
Your Welcome :) </span>
6The answer would be 0.3666666666666666666666666666.
Answer:
d
Step-by-step explanation:
it is d
25% as a fraction is 1/4 or 25/100 so as a decimal its 1/4 of 1 which is .25