Answer:
1. 505g is the mass of the aluminium.
2. The answer is in the explanation
Explanation:
1. To solve this question we need to find the volume of the rectangle. With the volume and density we can find the mass of the solid:
Volume = 7.45cm*4.78cm*5.25cm
Volume = 187cm³
Mass:
187cm³ * (2.702g/cm³) = 505g is the mass of the aluminium
2. When the temperature of a liquid increases, the volume increases doing the density decreases because density is inversely proportional to volume. And works in the same way for gases because the temperature produce more collisions and the increasing in volume.
HUNDRED GRAMS too because of the law of conservation of mass. The law of conservation of mass states that mass is neither created nor destroyed. So both sides will have the same mass
This is an acid – base reaction and this always result a salt and water
in a neutralization reaction. <span>
The salt that is formed will be calcium bromide (calcium
is located in group 2 so calcium bromide has a formula of CaBr2)
so essentially we got:
HBr + Ca(OH)2 ------> CaBr2 + H2O </span>
balancing the elements: <span>
<span>2HBr(aq) + Ca(OH)2(aq) --------> CaBr2(aq) +
2H2O(l)</span></span>
Answer:

Explanation:
<em>Ferrous Sulphate</em>
<em> is generally found as Lime-Green Crystals. On heating, these crystals almost immediately turn white-yellow. They then, break down to produce an anhydrous mixture of Sulphur Trioxide </em>
<em>, Sulphur Dioxide </em>
<em> as well as Ferric Oxide </em>
<em>.</em>
<em>We can hence, frame a skeletal equation of this reaction and try to balance it.</em>
<em>Hence,</em>

<em>Now,</em>
<em>a)In order to balance it through the 'Hit &Trial Method', we'll follow a series of </em><em>steps</em><em>:</em>
<em>1. First, lets compare the number of Fe (Iron) atoms on the RHS and LHS. We find that, the no. of Fe Atoms on the RHS is twice the number of Fe Atoms on the LHS. We hence, add a co-effecient 2 beside </em>
.
<em>2. Now, Iron atoms, Sulphur Atoms and Oxygen atoms occur 2, 2, 8 respectively on both the sides:</em>
<em> Hence, As all the other elements as well as iron, balance, we've arrived upon our Balanced Equation :</em>
<em> </em>
<em>b) We know that, decomposition reactions are [generally] endothermic reactions in which Large Compounds </em><em>decompose </em><em>into smaller elements and compounds. Here, as Ferrous Sulphate </em><em>decomposes </em><em>into Sulphur Dioxide, Sulphur Trioxide and Ferric Oxide, the reaction that occurs here is </em><em>Decomposition Reaction.</em>
Answer:
Away from the central sulfur atom.
Explanation: