Nuclear reaction involves two reacting particles a heavy target nucleus and a light bombarding particle and produces two new particles a heavier product nucleus and a lighter ejected particle.
Given what we know, we can confirm that the composer who made it a goal to create compositions that sounded truly American was Aaron Copland.
<h3>Who was Aaron Copland?</h3>
Aaron Copland was an American composer, among his other disciplines, best known for his jazz-styled music. He went on to win an Oscar award for film composing for the movie The Heiress (1949).
Therefore, we can confirm that the composer who made it a goal to create compositions that sounded truly American was Aaron Copland.
To learn more about music visit:
brainly.com/question/8051042?referrer=searchResults
The answer is: Dividing the number of molecules in the sample by Avogadro's number.
The Avogadro’s number is the number of atoms in 12 grams of the isotope carbon-12 (¹²C).
Na is Avogadro number or Avogadro constant (the number of particles, in this example carbon, that are contained in the amount of substance given by one mole).
The Avogadro number has value 6.022·10²³ 1/mol in the International System of Units; Na = 6.022·10²³ 1/mol.
For example:
N(Ba) = 2.62·10²³; number of atoms of barium.
n(Ba) = N(Ba) ÷ Na.
n(Ba) = 1.3·10²⁴ ÷ 6.022·10²³ 1/mol.
n(Ba) = 2.158 mol; amount of substance of barium.
Answer:
-54 kJ/mol
Explanation:
Given that:
A student mixed 50 ml of 1.0 M HCl and 50 ml of 1.0 M NaOH in a coffee cup calorimeter and calculated the molar enthalpy change of the acid-base neutralization reaction to be –54 kJ/mol
i.e
50 ml of 1.0 M HCl + 50 ml of 1.0 M NaOH -----> -54 kJ/mol
If he repeat the same experiment with :
100 ml of 1.0 M HCl + 100 ml of 1.0 M NaOH. ------> ????
From The experiment; the molar enthalpy of change of the acid-base neutralization reaction will be -54 kJ/mol
This is because : The second reaction requires 50 ml in order to neutralize the reaction, then the remaining 50 ml will be excess, Hence, there is no change in the enthalpy of the reaction.
Similarly; we can assume that :
In the first reaction; P moles of is used to liberate Q kJ heat ; then the change in molar enthalpy will be Q/P (kJ/mol).
SO; when he used 100 ml ;
then the amount of moles used is double, likewise the heat liberated will be doubled ;
So;
2P moles is used to liberate 2Q kJ heat ;
2P/2Q = Q/P ( kJ/mol) = -54 kJ/mol
Answer:
A. Single
Explanation:
saturated hydrocarbons, contain only single covalent bonds between carbon atoms.