Small ions have small areas. There is less resistance as they move through the solution.
For example, in molten salts, the conductivity of <span>Li+</span> is greater than that of <span>Cs+</span>.
Small ions have high charge density.
Answer:
b, decrease in movement of the molecules
Explanation:
removing the energy will begin making the molecules lock up and stop moving due to the loss of energy.
hope this helped
Answer:
strength = 10⁻²/10⁻³ = 10 times more acidic
Explanation:
1. A solution with a pH of 9 has a pOH of
pH + pOH = 14 => pOH = 14 - pH = 14 - 9 = 5
2. Which is more acidic, a solution with a pH of 6 or a pH of 4?
pH of 4 => Higher [H⁺] = 10⁻⁴M vs pH of 6 => [H⁺] = 10⁻⁶M
3. How many times more acidic is a solution with a pH of 2 than a solution with a pH of 3?
soln with pH = 2 => [H⁺] = 10⁻²M
soln with pH = 3 => [H⁺] = 10⁻³M
strength = 10⁻²/10⁻³ = 10 times more acidic
4. What is the hydrogen ion concentration [H + ] in a solution that has a pH of 8?
[H⁺] = 10^-pH = 10⁻⁸M
5. A solution has a pOH of 9.6. What is the pH? (Use the formula.)
pH + pOH = 14 => pH = 14 - 9.6 = 4.4
Answer: Limiting reactant = 3
Theoretical Yield= 1
Excess reactant=2
Explanation: The theoretical yield is the maximum possible mass of a product that can be made in a chemical reaction. It can be calculated from: the balanced chemical equation. the mass and relative formula mass of the limiting reactant , and. the relative formula mass of the product.
An excess reactant is a reactant present in an amount in excess of that required to combine with all of the limiting reactant. It follows that an excess reactant is one remaining in the reaction mixture once all the limiting reactant is consumed.
The limiting reagent is the reactant that is completely used up in a reaction, and thus determines when the reaction stops. From the reaction stoichiometry, the exact amount of reactant needed to react with another element can be calculated
Try to untie the knot from the balloon let some air out and tie if back....