Use the FOIL method to multiply these terms. Multiply the first, outside, inside, and last terms:
(5x - 4)(2x - 5)
(5x)(2x) + (5x)(-5) + (-4)(2x) + (-4)(-5)
10x² - 25x - 8x + 20
10x² - 33x + 20
The area of the rectangle should be 10x² - 33x + 20.
Answer:
Step-by-step explanation:
What is the question?
g(x) = -0.5x² + 4x - 2 is a down-opening parabola. Do you need to know how to put it in vertex form?
vertex (4,6)
focus (4,5.5)
Answer:
In the problem, the sum of the two functions is 2x + 2
Step-by-step explanation:
For this problem, we have to add together f(x) and g(x).
<em>f(x) = 9 - 3x</em>
<em>g(x) = 5x - 7</em>
(f + g)(x) = (9 - 3x) + (5x - 7)
Combine like terms.
(f + g)(x) = 2x + 2
So, when you combine the two functions together, you will get 2x + 2.
1)
I:x-y=-7
II:x+y=7
add both equations together to eliminate y:
x-y+(x+y)=-7+7
2x=0
x=0
insert x=0 into II:
0+y=7
y=7
the solution is (0,7)
2)
I: 3x+y=4
II: 2x+y=5
add I+(-1*II) together to eliminate y:
3x+y+(-2x-y)=4+(-5)
x=-1
insert x=-1 into I:
3*-1+y=4
y=7
the solution is (-1,7)
3)
I: 2e-3f=-9
II: e+3f=18
add both equations together to eliminate f:
2e-3f+(e+3f)=-9+18
3e=9
e=3
insert e=3 into I:
2*3-3f=-9
-3f=-9-6
-3f=-15
3f=15
f=5
the solution is (3,5)
4)
I: 3d-e=7
II: d+e=5
add both equations together to eliminate e:
3d-e+(d+e)=7+5
4d=12
d=3
insert d=3 into II:
3+e=5
e=2
the solution is (3,2)
5)
I: 8x+y=14
II: 3x+y=4
add I+(-1*II) together to eliminate y
8x+y+(-3x-y)=14-4
5x=10
x=2
insert x=2 into II:
3*2+y=4
y=4-6
y=-2
the solution is (2,-2)