A.
The first energy level has 2 electrons, the second has 8, and the third has 4
Theoretical Yield of this reaction is
59.34 g. Following is the solution,
From ideal gas equation that is PV=nRT
n(number of moles)=PV/RT
P=760 torr
V=4.50L
R(gas constant =62.363667torr/l/mol
T=273 +273=298k
n is therefore (760torr x4.50L) /62.36367 torr/L/mol x298k =0.184moles
the molar mass of NO2 is 46 therefore density= 0.184 x 46=8.464g/l
Assuming the person has about 154 pounds (70kg) the weight of an average human. There would be around 7000000000000000000000000000 atoms
or 7 x 10^27
To assume the empirical formula of a compound, you want the ratio of the moles of every element, and you discover that by means of the percent’s of the element as the element's mass.
As an instance, if a compound is 16% Carbon and 84% sulfur, you can round about that if you had a 100 gram sample of the compound, it would contain 16 grams of carbon & 84 grams of sulfur.
To look for the moles of carbon in that sample, you would distribute the mass by the atomic mass of carbon, so 16/12 = 1.3 moles. You do the similar calculation with the other elements. For Sulfur, you divide 84g by the atomic mass of sulfur, so 84/32 = 2.6moles of sulfur. You endure in this same way if there is more than 2 elements.
Lastly you find the ratio of the moles of every element. The unassuming way to do this is to look the element with the smallest number of moles and split the other moles by that number. In the above example 2.6 moles of Sulfur divided by 1.3 moles of Carbon equals 2. (Which is a 2:1 ratio) Therefore there is twice as numerous sulfurs as carbons in this compound, and the empirical formula is CS2.