Answer:
156 Hydrogen atoms
Explanation:
<u>Any acyclic alkane has a molecular formula that can be expressed as</u>:
CₙH₂ₙ₊₂
Where <em>n</em> is any integer and the number of carbon atoms. For example, Propane has 3 carbon atoms, this means it would have [2*3+2] 8 hydrogen atoms, resulting with a formula of C₃H₈.
An acyclic alkane with 77 carbon atoms would thus have:
2*77 + 2 = 156 hydrogen atoms
#6 should be the independent variable because that's the one you can control
Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l
Answer:
Heat and mass transfer of a LiBr/water absorption heat pump system (AHP) was experimentally studied during working a heating-up mode. The examination was performed for a single spiral tube, which was simulated for heat transfer tubes in an absorber. The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere, respectively. The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube. The steam absorption rate and/or heat generation rate in the liquid film are not constant along the tube. Hence the average convective heat transfer coefficient between the liquid film flowing down and the inside wall of the tube was determined based on a logarithmic mean temperature difference between the tube surface temperature and the film temperature at the maximum temperature location and the bottom. The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.
Answer:
23.2 g of Al will be left over when the reaction is complete
Explanation:
2Al + 3S → Al₂S₃
1 mol of Al = 26.98 g
1 mol of S = 32.06 g
Mole = Mass / Molar mass
63.8 g/ 26.98 g/m = 2.36 mole of Al
72.3 g / 32.06 g/m = 2.25 mole of S
2 mole of Aluminun react with 3 mole of sulfur
2.36 mole of Al react with (2.36 .3)/2 = 3.54 m of S
As I have 2.25 mole of S, and I need 3.54 S, is my limiting reagent so the limiting in excess is the Al.
3 mole of S react with 2 mole of Al
2.25 mole of S react with (2.25 m . 2)/3 = 1.50 mole
I need 1.50 mole of Al and I have 2.36, that's why the Al is in excess.
2.36 mole of Al - 1.50 mole of Al = 0.86 mole
This is the quantity of Al without reaction.
Molar mass . mole = Mass → 26.98 g/m . 0.86 m = 23.2 g