Answer:
New location at time 3.01 is given by: (7.49, 2.11)
Explanation:
Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:


Therefore, adding these displacements in component form to the original particle's position, we get:
New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)
Answer:
I think it's A but I'm not sure
<h2>
82.353 km/hr</h2>
Explanation:
The driver travels 135 km towards East in 1.5 hr. He stops for 45 min. He again travels 215 km towards East in 2.0 hr.
The total displacement of the driver in the given time is ths sum of individual displacements, because all the displacements are in the same directon.
Total displacement = 
Total time travelled = 

∴ Driver's average velocity = 
Answer:
See the explanation below
Explanation:
The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.

where:
Ro = density of the fluid [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.
Therefore in order of decreasing will be
The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.
The pressure decreases as we go from the container B - D - A - C
Answer:3.51
Explanation:
Given
Coefficient of Friction 
Consider a small element at an angle \theta having an angle of 
Normal Force

Friction 

and 






