The value of the coefficient of kinetic friction between the wagon and inclined surface is 0.78.
<h3>
Coefficient of the kinetic friction</h3>
The value of coefficient of kinetic friction is calculated as follows;
F - Ff = ma
F - μmgcosθ = ma
where;
- F is applied force
- μ is coefficient of kinetic friction
- m is mass of the wagon
- a is acceleration of the wagon
182 - μ(20 x 9.8 x cos30) = 20(2.5)
182 - 169.74μ = 50
182 - 50 = 169.74μ
132 = 169.74μ
μ = 132/169.74
μ = 0.78
Thus, the value of the coefficient of kinetic friction between the wagon and inclined surface is 0.78.
Learn more about coefficient of friction here: brainly.com/question/20241845
Heat is measured in joules and temperature is measured in F degrees or C degrees.
The correct answer for the question that is being presented above is this one: "Schmidt-Cassegrain focus." A focal arrangement that has a thin lens that the light passes through before traveling down the tube to the objective mirror is a Schmidt-Cassegrain focus.
Here are the following choices:
a. Cassegrain focus
b. Newtonian focus
c. Schmidt-Cassegrain focus
<span>d. Schmidt focus</span>
Answer:
Bananas go through a process called ‘negative geotropism’ so they can reach the sun
Answer:
2.64 m/s
Explanation:
Given that a 600 kilogram great "yellow" shark swimming to the right at a speed of 3 meters traveled each second as it tries to get lunch. An unsuspecting 100 kilogram blue fin tuna is minding its own business swimming to the left at a speed of 0.5 meters traveled each second. GULP! After the great "yellow" shark "collides" with the blue fin tuna
Momentum = MV
Momentum of the yellow shark before collision = 600 × 3 = 1800 kgm/s
Momentum of the tun final before collision = 100 × 0.5 = 50 kgm/s
Total momentum before collision = 1800 + 50 = 1850 kgm/s
Let's assume that they move together after collision. Then,
1850 = ( 600 + 100 ) V
1850 = 700V
V = 1850 / 700
V = 2.64285 m/s
Therefore, the momentum of the shark after collision is 2.64 m/ s approximately