2.2311 moles of gas are there in a 50. 0 l container at 22. 0 °c and 825 torrs.
<h3>What is an ideal gas?</h3>
An Ideal gas is a hypothetical gas whose molecules occupy negligible space and have no interactions, and which consequently obeys the gas laws exactly.
Assuming the gas is ideal, we can solve this problem by using the following equation:
PV = nRT
Where:
P = 825 torr ⇒ 825 / 760 = 1.08 atm
V = 50 L
n = ?
R = 0.082 atm·L·mol⁻¹·K⁻¹
T = 22 °C ⇒ 22 + 273.16 = 295.16 K
We input the data:
1.08 atm x 50 L = n x 0.082 atm·L·mol⁻¹·K⁻¹ x 295.16 K
And solve for n:
24.20312
n = 2.2311 mol
Hence, 2.2311 moles of gas are there in a 50. 0 L container at 22. 0 °c and 825 torrs.
Learn more about ideal gas here:
brainly.com/question/23580857
#SPJ4
Explanation:
K2O Now the cation is the element at the front so it would be K2 because the 2 belongs with the K which is Potassium and now Anion is the last element O for oxygen
Make sure to list known values on the side. Based on the wording of the question, we know that pressure is constant and moles is constant. You can rearrange the ideal gas equation and solve for the volume.