Answer:
168.4 mL
Explanation:
Data Given
initial volume V1 of gas in balloon = 100 mL
initial pressure P1 of gas in balloon = 3.2 atm
final pressure P2 of gas in balloon = 1.9 atm
final volume V2 of gas in balloon = ?
Solution:
This problem will be solved by using Boyle's law equation at constant Temperature.
The formula used
P1V1 = P2V2
As we have to find out Volume, so rearrange the above equation
V2 = P1V1 / P2
Put value from the data given
V2 = 100 mL x 3.2 atm / 1.9 atm
V2 = 168.4 mL
So the final Volume of gas in baloon = 168.4 mL
Answer:
As the electrons flow through the wire, <em>electric current </em>is generated around the wire.
Explanation:
The rate of flow of charged particles in a given time is termed as the flow of current. Mostly the charge carriers are termed as electrons in a conductor. So the flow of electrons or movement of charged particles in a given time is the generation of electric current in that current. As the ratio of charge to time at which the charge is moving from one point to another is termed as the current flow in that time.

Thus, in the present case of electrons flowing in that wire will lead to generating of electric current in the opposite direction around the wire.
I would say the answer is A.
Producer. Hope this helps!
(80+125+45) / 10 = 250/10 =25
25 meters per minute= 0.41 meters/second
the direction and stopping time is irrelevant to the problem.