A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Kilograms per cubic centimeter
Answer:
Step-by-step explanation:
Given
See attachment for proper format of table
--- Sample
A = Supplier 1
B = Conforms to specification
Solving (a): P(A)
Here, we only consider data in sample 1 row.
In this row:
and
So, we have:
P(A) is then calculated as:
Solving (b): P(B)
Here, we only consider data in the Yes column.
In this column:
and
So, we have:
P(B) is then calculated as:
Solving (c): P(A n B)
Here, we only consider the similar cell in the yes column and sample 1 row.
This cell is: [Supplier 1][Yes]
And it is represented with; n(A n B)
So, we have:
The probability is then calculated as:
Solving (d): P(A u B)
This is calculated as:
This gives:
Take LCM