1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
3 years ago
11

to make cupcakes, a recipe says you need 2 cups of sugar for 5 cups of flour. how many cups of sugar are needed for each cup of

flour
Mathematics
2 answers:
stiv31 [10]3 years ago
6 0
5÷2= 2 1/2
Two and a half cups of sugar are needed for each cup of flour. (2 1/2)
NeX [460]3 years ago
4 0
0.4 cups of sugar are needed for each cup of flour.
You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Bennett is setting up a light display for a wedding with two 10-foot strands of lights. The lights will be attached to the top o
Anuta_ua [19.1K]

Answer:

7.1

Step-by-step explanation:

write pythagorean theorem x^{2} + x^{2} = 10^2

2x^2 = 100

divide 2 both side:

x^{2} = 50

\sqrt{x^2} = \sqrt{50}

x = \sqrt{50}

x = 7.07106781

round to nearest tenth:

x = 7.1

8 0
3 years ago
The math department needs to buy new textbooks and laptops for the computer science classroom. The textbooks cost $116.00 each,
Sav [38]

Answer:

6 laptops

Step-by-step explanation:

First, find the amount spent on the textbooks:

30(116)

= 3480

Subtract this from the total amount they have to spend:

6500 - 3480

= 3020

Divide this amount by 439 to find how many laptops they can buy:

3020/439

= 6.8

Round down to 6 since you can only have full laptops:

= 6

So, they can buy 6 laptops

6 0
3 years ago
Barbara says that the expression
insens350 [35]

Answer:

No she is wrong.

Step-by-step explanation:

Let's simplify step-by-step.

6−3y+4+2y

=6+−3y+4+2y

Combine Like Terms:

=6+−3y+4+2y

=(−3y+2y)+(6+4)

=−y+10

Answer:

=−y+10

5 0
3 years ago
Can anyone help me out
Genrish500 [490]

Answer:

12k^5 +24k⁴+30k³

Step-by-step explanation:

the area = 6k³(2k²+4k+5)

= 12k^5 +24k⁴+30k³

5 0
3 years ago
Other questions:
  • Simplify 3/5 * 35 - 61
    6·1 answer
  • a pair of socks costs $5.00. a package of 3 pairs costs $12.00. how much would you save if you buy 2 packages instead of 6 indiv
    10·1 answer
  • Help as soon as possible please
    12·1 answer
  • Reduce ratio to lowest form 50 : 35​
    13·2 answers
  • Read the above and answer​
    7·1 answer
  • Whoever checks my work and tell what I did wrong and the right answer will
    9·1 answer
  • I thought i had the right answer, but it was wrong. So anyone want to to help me with this? Please dont steal points. 7 points e
    14·2 answers
  • Solve the equation. Show all of your work. 1/59X + 60) = 2/3x- 2
    7·1 answer
  • 15. Louis is going to put new wood floors in his rectangular shaped living room. He measured his living
    15·1 answer
  • Describe how to use the formula C = StartFraction 5 Over 9 EndFraction (F minus 32) to find the temperature in degrees Celsius i
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!