Answer:
A. It does not exhibit projectile motion and follows a straight path down the ramp.
Answer:
DETAILS IN THE QUESTION INSUFFICIENT TO ANSWER
Explanation:
Assuming the liquid to be water ,
the density
of water is :
Buoyant force exerted by a liquid on an object with
of it's volume immersed is :

where ,
is the buoyant force
is the density of the liquid
is the acceleration due to gravity
Thus at equilibrium:

from these , we get the density of brass to be 
which is not possible
Answer:
D. The tea loses heat to the spoon causing the spoon to become warmer
Explanation:
When the silver spoon at a lower temperature than the tea, is added to the tea, it makes thermal contact. Hence, the heat transfer starts between the two until the equilibrium is reached. We know that the heat transfer takes place from the body with a higher temperature to a body with a lower temperature. As a result, the body with higher temperature loses heat and its temperature lowers down. While the body with a lower temperature gains heat and its temperature rises.
Therefore, the correct option is:
<u>D. The tea loses heat to the spoon causing the spoon to become warmer</u>
Answer:
emf will also be 10 times less as compared to when it has fallen 
Explanation:
We know, from faraday's law-

and 
So, as the height increases the velocity with which it will cross the ring will also increase. 
Given


Now, from 

From equation a and b we see that velocity when dropped from
is 10 times greater when height is 40
so, emf will also be 10 times less as compared to when it has fallen 
Answer:
Power will be 0.2023 watt
And when amplitude is halved then power will be 0.0505 watt
Explanation:
We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg
Length of wire l = 84 cm = 0.84 m
So mass density 
Tension in the wire T = 25 N
Frequency f = 120 Hz
So angular frequency 
And amplitude A = 1.6 mm = 0.0016 m
We have to find the generated power
Power is given by 
From the relation we can see that power 
So if amplitude is halved then power will be
times
So power will be equal to 