Answer:
Now we can calculate the p value with the following probability:
Since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true proportion for this case is higher than 0.5
Step-by-step explanation:
Data given and notation
n=75 represent the random sample taken
estimated proportion of interest
is the value that we want to test
represent the significance level
Confidence=95% or 0.95
z would represent the statistic
represent the p value
System of hypothesis
We want to verify if the true proportion is higher than 0.5:
Null hypothesis:
Alternative hypothesis:
The statistic is given by:
(1)
Replacing the info given we got:
Now we can calculate the p value with the following probability:
Since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true proportion for this case is higher than 0.5
Answer:
80%
Step-by-step explanation:
41.40/23 = 1.8 = 180% = 100% + 80%
The markup is 80%.
That's the beginning of Euler's number ' e '.
It falls between the square roots of 7 and 8 .
Hey ! You know what !
It falls between the square roots of any integer
less than 8 and any integer greater than 7 .
Answer:
look below
Step-by-step explanation:
y = 2 (x + 3)^2 - 2
Geometric figure: parabola
Alternate forms:
y = 2 (x + 2) (x + 4)
y = 2 (x^2 + 6 x + 8)
-2 x^2 - 12 x + y - 16 = 0
Expanded form:
y = 2 x^2 + 12 x + 16
Roots:
x = -4
x = -2
<u>Properties as a real function:
</u>
Domain
- R (all real numbers)
Range
- {y element R : y>=-2}
Partial derivatives:
d/dx(2 (x + 3)^2 - 2) = 4 (x + 3)
d/dy(2 (x + 3)^2 - 2) = 0
Implicit derivatives:
(dx(y))/(dy) = 1/(12 + 4 x)
(dy(x))/(dx) = 4 (3 + x)
Global minimum:
min{2 (x + 3)^2 - 2} = -2 at x = -3
Your answer is d, or the fourth option! hope this helped!