Answer:
From question (a) and (b) the pendulum motion is perpendicular to the force so the normal force will do no work and the tension in the string of the pendulum will not work

And
so

c
An example will be a where a stone is attached to the end of a string and is made to move in a circular motion while keeping the other end of the string in a fixed position
d
A dog walking along a surface which has friction, here the frictional force would acting in the direction of the motion and this would do positive work
Explanation:
Answer: 1175 J
Explanation:
Hooke's Law states that "the strain in a solid is proportional to the applied stress within the elastic limit of that solid."
Given
Spring constant, k = 102 N/m
Extension of the hose, x = 4.8 m
from the question, x(f) = 0 and x(i) = maximum elongation = 4.8 m
Work done =
W = 1/2 k [x(i)² - x(f)²]
Since x(f) = 0, then
W = 1/2 k x(i)²
W = 1/2 * 102 * 4.8²
W = 1/2 * 102 * 23.04
W = 1/2 * 2350.08
W = 1175.04
W = 1175 J
Therefore, the hose does a work of exactly 1175 J on the balloon
Answer:
16.935 N
Explanation:
In order to make the box start moving, the level force applied on the box (F) must be greater than the force of static friction that keeps the box at rest, which is equal to

where
is the coefficient of static friction
(mg) = 30 N is the weight of the box
Therefore, the condition for F must be:

So, the applied force must be greater than this value.
Answer:

Explanation:
Density can be found by dividing the mass by the volume.

The mass of the quartz is 30 grams and the volume is 6 cubic centimeters.

Substitute the values into the formula.

Divide.

The density of this piece of quartz is 5 grams per cubic centimeter.