Igneous rocks metamorphic rocks and sedimentary rocks
Answer:
2.51 Angstroms
Explanation:
For a particle in a one dimensional box, the energy level, En, is given by the expression:
En = n²π² ħ² / 2ma²
where n is the energy level, ħ² is Planck constant divided into 2π, m is the mass of the electron ( 9.1 x 10⁻³¹ Kg ), and a is the length of the one dimensional box.
We can calculate the change in energy, ΔE, from n = 2 to n= 3 since we know the wavelength of the transition ( ΔE = h c/λ ) and then substitute this value for the expresion of the ΔE for a particle in a box and solve for the length a.
λ = 207 nm x 1 x 10⁻⁹ m/nm = 2.07 x 10⁻⁷ m ( SI units )
ΔE = 6.626 x 10⁻³⁴ J·s x 3 x 10⁸ m/s / 2.07 x 10⁻⁷ m
ΔE = 9.60 x 10⁻¹⁹ J
ΔE(2⇒3) = ( 3 - 2 ) x π² x ( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
9.60 x 10⁻¹⁹ J = π² x( 6.626 x 10⁻³⁴ J·s / 2π )² / ( 2 x 9.1 x 10⁻³¹ Kg x a² )
⇒ a = 2.51 x 10⁻¹⁰ m
Converting to Angstroms:
a = 2.51 x 10⁻¹⁰ m x 1 x 10¹⁰ Angstrom / m = 2.51 Angstroms
Answer:
Explanation:
Well your testing different things so like your testing what will happen each day so what will happen if i add this what will happen if i took away this something like that kind of
6CO2 + 6H2O → C6H12O6 + 6O2.
Answer: According to Moseley, similar properties recur periodically when elements are arranged according to increasing atomic number. Atomic numbers, NOT weights, determine the factor of chemical properties.
Mendeleev realized that the physical and chemical properties of elements were related to their atomic mass in a "periodic" way, and arranged them so that groups of elements with similar properties fell into vertical columns in his table