Answer:
Answer:
Number of Significant Figures: 5
The Significant Figures are 3 0 6 7 0
Explanation:
hope this helps
<h3>Answer:</h3>
There is One electrophilic center in acetyl chloride.
<h3>Explanation:</h3>
Electrophile is defined as any specie which is electron deficient and is in need of electrons to complete its electron density or octet. The main two types of electrophiles are those species which either contain positive charge (i.e. NO₂⁺, Cl⁺, Br⁺ e.t.c) or partial positive charge like that contained by the sp² hybridized carbon of acetyl chloride shown below in attached picture.
In acetyl chloride the partial positive charge on sp² hybridized carbon is generated due to its direct bonding to highly electronegative elements *with partial negative charge) like oxygen and chlorine, which tend to pull the electron density from carbon atom making it electron deficient and a good electrophile for incoming nucleophile as a center of attack.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156