To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
Answer:
40m
Explanation:
let's calculate the acceleration first
force = mass × acceleration
rearranging to find acceleration:
acceleration = force ÷ mass
force = 25N, mass = 5.0kg
acceleration = 25 ÷ 5 = 5ms^-2
we can now use the formula v^2 = u^2 + 2as where v = final velocity, u = initial velocity, a = acceleration and s = distance
rearranging v^2 = u^2 + 2as the distance is
s = (v^2 - u^2) ÷ 2a
v = 20, u = 0, a = 5
s = (20^2 - 0^2) ÷ (2 × 5) = 40m
the distance is 40m
We did this experiment before, when the rope moves, it represents the waves passing through in from the level of intensity. I hope this is a good answer.
Answer:
F = 1,875 N
Explanation:
force=

∆H = m∆V
where ∆H ----> change in momentum.
( final momentum - initial momentum )
and ∆V ----> change in velocity
( final velocity - initial velocity )
and m ----> is mass
then f =

= 1,875 N
Answer:
a,b,c,e,d
Explanation:
The typical approach by the scientists use to understand the physical world includes the following steps:
Identifying a Problem
Researching the Information
Stating a Hypothesis (Possible Solution)
Testing the Hypothesis
Gather Data
Analysis of the Data
Stating a Conclusion
Publishing the Result
Therefore, according to the question the correct order would be:
a. Observation of physical world.
b. Create hypothesis about observation.
c. Test consequences of hypothesis
e. Adjust results to agree with popular opinion
d. Report outcome