Answer:

Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

The initial potential energy of the spring is given by the equation:

the Kinetic energy of the block is then given by the equation:

so we can now set them both equal to each other, so we get:

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

so now we can solve this for the final velocity, so we get:

D. Carbon
Carbon cycle is an example of a biogeochemical cycle. <span>The biogeochemical cycles move through mainly </span>the biotic and abiotic components of the earth<span>, more elaborately the spheres -biospheres, lithosphere, hydrosphere and atmosphere regions of the ecosystem. These biogeochemical cycles, from its terminology and discernable word morphology- involves the biological, geological and chemical components that make out to complete an exact and purposed cycle. The purpose in these cycles are to maintain balance and to ensure the ongoing process of the living and non-living organisms in the environment. These cycles’ help to living organisms survive and thrive. One popular example is the water cycle. </span>
The way to do this is very easy so do 4125 x 2 = ? then the ? will be times by 2 again after the answer to both of those is your answer!!!
Relative dating is used to arrange geological events….
Relative dating puts geologic events in chronological order without requiring that a specific numerical age be assigned to each event….
Relative Dating uses the half life of isotopes to get the exact age of a rock or mineral.