Answer:
0.9612 g
Explanation:
First we <u>calculate how many moles are there in 3.00 g of CCl₃F</u>, using its <em>molar mass</em>:
- 3.00 g CCl₃F ÷ 137.37 g/mol = 0.0218 mol CCl₃F
Now, we need to calculate how many grams of N₂O would have that same number of molecules, or in other words, <em>the same amount of moles</em>.
Thus we <u>calculate how many grams would 0.0218 moles of N₂O weigh</u>, using the <em>molar mass of N₂O</em> :
- 0.0218 mol N₂O * 44.013 g/mol = 0.9612 g N₂O
It is not good conductors of electricity or heat!
B. a nucleus with a positive charge.
Answer:
Ca²⁺ + 2 OH⁻ → Ca(OH)₂(s)
Explanation:
In chemistry, the net ionic equation is a way to write a chemical reaction whereas you write only the ions that are involved in the reaction.
When calcium chloride, CaCl₂ reacts with sodium hydroxide, NaOH to produce Ca(OH)₂ the only ions involved in the reaction are Ca²⁺ and OH⁻, thus, the balanced net ionic equation is:
<em>Ca²⁺ + 2 OH⁻ → Ca(OH)₂(s)</em>
<em>Cl⁻ and Na⁺ are not involved in the reaction and you don't have to write them.</em>
Answer:
(iv) (A) is false, but (R) is true.
Explanation:
It is not true that carbon has a strong tendency to either lose or gain electrons to attain noble gas configuration. Carbon is a member of group 14, it is the first member of the group and carbon is purely a non metal. Only metals metals can loose electrons to attain the noble gas configuration. Moreover, carbon does not participate in ionic bonding so it does not gain electrons to attain the noble gas configuration.
However, carbon participates in covalent bonding where it is covalently bonded to four other chemical species using its four outermost electrons. Carbon forms covalent bonds in which four electrons are shared with other chemical species.