Answer:
The nuclear charge increases from boron to carbon, but there is no additional shielding( that is no additional shells).
Explanation:
First of all, we must know the electron configuration of carbon and boron.
Boron- 1s2 2s2 2p1
Carbon- 1s2 2s2 2p2
Moving from boron to carbon, the effective nuclear charge increases without a corresponding increase in the number of shells. Remember that shielding increases with increase in the number of intervening shells between the outermost electron and the nucleus. Since there isn't an increase in shells, boron experience a lower screening effect.
From
Zeff= Z- S
The Z for carbon is 6 while for boron is 5 even though both have the same number of screening electron S(4 screening electrons). Hence it is expected the Zeff(effective nuclear charge) for boron will be less than that of carbon.
The answer is: supersaturated solution.
A supersaturated solution contains more of the dissolved substance than could be dissolved by the solvent under normal circumstances.
A way to dissolve more sugar into a solution is heating a solution.
The more heat is added to a system, the more soluble a substance (in this example sugar) becomes.
The solution will become supersaturated if this solution is suddenly cooled at a rate faster than the rate of precipitation.
Answer:

Explanation:
Hello!
In this case, it is possible to treat this problem by using a proportional factor which indicates one iron nail equals 2.0 grams:

Now, for an amount of 6.022x10²³ nails, the corresponding mass will be:

Best regards!
Answer:
Kr is a Noble Gas. Na is an alkali metal. F is halogen.
Group 17 is halogens. Inert is Noble Gases. Odourless and colourless is Noble Gases. Alkali metals do not occur freely in nature. Alkali metals are malleable
Explanation:
Answer:
they need the exchange so they can grow, obtain energy, and get rid of waste. It also helps to mantian a balance of amterials in the cell.
Explanation: