The right answer is metaphase II.
The process is performed in two nuclear and cytoplasmic divisions, called first and second meiotic division or simply meiosis I and meiosis II. Both include prophase, metaphase, anaphase, and telophase. First division prophase is long and consists of 5 stages: leptotene, zygotene, pachytene, diplotene, and diakinesis. It is at this point that genetic recombination takes place at the level of chiasmus.
During meiosis I, the members of each homologous pair of chromosomes are paired during prophase, forming bivalents. During this phase, a protein structure, called synaptonemal complex form, allows recombination between homologous chromosomes. Subsequently, a large condensation of the bivalent chromosomes occurs and go to the metaphase plate during the first metaphase, resulting in the migration of n chromosomes to each of the poles during the first anaphase. This reduction division is responsible for maintaining the number of chromosomes characteristic of each species.
In meiosis II, as in mitosis, the sister chromatids comprising each chromosome are separated and distributed between the nuclei of the daughter cells. Between these two successive steps, there is no DNA replication. The maturation of the daughter cells will result in the gametes.
Answer:
The correct option is : c. gas gangrene
Explanation:
Gas gangrene is a serious bacterial infection caused by the infection of the Clostridium perfringens bacteria. This bacteria is always present in the nature and is a rod-shaped, gram-positive bacteria, that belongs to the Clostridium genus.
This disease can cause gas production in gangrene, death of the muscle tissues and also sepsis.
<u>Therefore, Gas gangrene is most associated with the bacteria Clostridium perfringens.</u>
Answer:
The correct option is <em>B) ultraviolet region, especially below a wavelength of 320 nm.</em>
Explanation:
Ultraviolet light carries an enormous amount of energy in it. It is invisible to the human eye. When UV light with enormous energy and wavelength lesser than 320nm, hits the DNA, it causes changes in the structure of the DNA. Mostly, it affects the thymine nitrogenous base regions and forms pyrimidine dimers. The structure of the DNA changes on all the sites where dimers form and hence, they cannot be properly transcribed.
Preformed water (ingested in food and drink) and metabolic water (by product of aerobic respiration and dehydration synthesis)