Answer:
V1=5<u>ft3</u>
<u>V2=2ft3</u>
n=1.377
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=4lb*1.25ft3/lb=5<u>ft3</u>
state 2
V2=m.v2
V2=4lb*0.5ft3/lb= <u> 2ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/53)/ ln (2/5)
n=1.377
Answer:
Check the explanation
Explanation:
Code
.ORIG x4000
;load index
LD R1, IND
;increment R1
ADD R1, R1, #1
;store it in ind
ST R1, IND
;Loop to fill the remaining array
TEST LD R1, IND
;load 10
LD R2, NUM
;find tw0\'s complement
NOT R2, R2
ADD R2, R2, #1
;(IND-NUM)
ADD R1, R1, R2
;check (IND-NUM)>=0
BRzp GETELEM
;Get array base
LEA R0, ARRAY
;load index
LD R1, IND
;increment index
ADD R0, R0, R1
;store value in array
STR R1, R0,#0
;increment part
INCR
;Increment index
ADD R1, R1, #1
;store it in index
ST R1, IND
;go to test
BR TEST
;get the 6 in R2
;load base address
GETELEM LEA R0, ARRAY
;Set R1=0
AND R1, R1,#0
;Add R1 with 6
ADD R1, R1, #6
;Get the address
ADD R0, R0, R1
;Load the 6th element into R2
LDR R2, R0,#0
;Display array contents
PRINT
;set R1 = 0
AND R1, R1, #0
;Loop
;Get index
TOP ST R1, IND
;Load num
LD R3,NUM
;Find 2\'s complement
NOT R3, R3
ADD R3, R3,#1
;Find (IND-NUM)
ADD R1, R1,R3
;repeat until (IND-NUM)>=0
BRzp DONE
;load array address
LEA R0, ARRAY
;load index
LD R1, IND
;find address
ADD R3, R0, R1
;load value
LDR R1, R3,#0
;load 0x0030
LD R3, HEX
;convert value to hexadecimal
ADD R0, R1, R3
;display number
OUT
;GEt index
LD R1, IND
;increment index
ADD R1, R1, #1
;go to top
BR TOP
;stop
DONE HALT
;declaring variables
;set limit
NUM .FILL 10
;create array
ARRAY .BLKW 10 #0
;variable for index
IND .FILL 0
;hexadecimal value
HEX .FILL x0030
;stop
.END
Three families live in the same apartment building. They decided to share a giant 220-ounce container.