Given :
Force,
.
Force is acting at point A( 2 m, 3 m ) and B( 3 m, 5 m )
To Find :
The work done by force F .
Solution :
Displacement vector between point A and B is :

Now, we know work done is given by :

W = 12000 J
Therefore, work done by force is 12000 J .
Answer:
0.024 m = 24.07 mm
Explanation:
1) Notation
= tensile stress = 200 Mpa
= plane strain fracture toughness= 55 Mpa
= length of a surface crack (Variable of interest)
2) Definition and Formulas
The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.
By definition we have the following formula for the tensile stress:
(1)
We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for 
Multiplying both sides of equation (1) by 
(2)
Sequaring both sides of equation (2):
(3)
Dividing both sides by
we got:
(4)
Replacing the values into equation (4) we got:
![\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cfrac%7B55%20Mpa%5Csqrt%7Bm%7D%7D%7B1.0%28200Mpa%29%7D%5D%5E2%20%3D0.02407m)
3) Final solution
So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.
Answer:
See explanation below.
Explanation:
For this case the program needs to take the inputs as P,r and n and the output would be as A and printed on the system. The code is:
# Inputs
P = float(input("Enter the present value : "))
r = float(input("Enter your APR : "))
n = float(input("Enter the number of years : ") )
# Output
A = P*(1 +(r/100))**n
print("The future values is:", A)
And the result obtained is:
Enter the present value : 1000
Enter your APR : 0.95
Enter the number of years : 5
The future values is: 1048.4111145526908
The correct question;
An object of irregular shape has a characteristic length of L = 1 m and is maintained at a uniform surface temperature of Ts = 400 K. When placed in atmospheric air at a temperature of Tinfinity = 300 K and moving with a velocity of V = 100 m/s, the average heat flux from the surface to the air is 20,000 W/m² If a second object of the same shape, but with a characteristic length of L = 5 m, is maintained at a surface temperature of Ts = 400 K and is placed in atmospheric air at Too = 300 K, what will the value of the average convection coefficient be if the air velocity is V = 20 m/s?
Answer:
h'_2 = 40 W/K.m²
Explanation:
We are given;
L1 = 1m
L2 = 5m
T_s = 400 K
T_(∞) = 300 K
V = 100 m/s
q = 20,000 W/m²
Both objects have the same shape and density and thus their reynolds number will be the same.
So,
Re_L1 = Re_L2
Thus, V1•L1/v1 = V2•L2/v2
Hence,
(h'_1•L1)/k1 = (h'_2•L2)/k2
Where h'_1 and h'_2 are convection coefficients
Since k1 = k2, thus, we now have;
h'_2 = (h'_1(L1/L2)) = [q/(T_s - T_(∞))]• (L1/L2)
Thus,
h'_2 = [20,000/(400 - 300)]•(1/5)
h'_2 = 40 W/K.m²
Answer:
science technology engineering mathematics
Explanation: