The energy of the wave does not move through anything
To solve this you need to find the radius of the bigger cylinder so you have to solve the equation 36π=

π(9). When you solve it you end up with a radius of 2 in which you multiply by 1.2 which gives you the radius of the new cylinder which is 2.4. With the new radius you simply find the volume of the bigger cylinder which is 51.94π

.
C2H6 is the most polarizable and other two are non-polar molecules
Answer:
See explanation.
Explanation:
Hello!
In this case, we consider the questions:
a. Ideal gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
b. Van der Waals gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
Thus, we define the ideal gas equation and the van der Waals one as shown below:

Whereas b and a for hydrogen sulfide are 0.0434 L/mol and 4.484 L²*atm / mol² respectively, therefore, we proceed as follows:
a.
i. 273.15 K and 22.414 L.

ii. 500 K and 100 cm³ (0.1 L).

b.
i. 273.15 K and 22.414 L: in this case, v = 22.414 L / 1.00 mol = 22.414 L/mol

ii. 500 K and 100 cm³: in this case, v = 0.1 L / 1.00 mol = 0.100 L/mol

Whereas we can see a significant difference when the gas is at 500 K and occupy a volume of 0.100 L.
Best regards!