Answer:
12 kgm²
Explanation:
here angular acceleration = 10rad/sec²
torque= 120Nm
moment of inertia=?
we know,
torque= angular acceleration× moment of Inertia
or, moment of inertia = torque/angular acceleration
= 120/10
= 12kgm²
We have that for the Question "the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?"
- it can be said that the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
From the question we are told
the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?
Generally the equation for the Force is mathematically given as
F=\frac{F}{dx}
Therefore
F=-kdx
k=600Nm^{-1}
now
K.E=0.5x ds^2
K.E=600*(-0.1^2)
K.E=3J
Therefore
the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
For more information on this visit
brainly.com/question/23379286
Answer:
5. Quadruple
Explanation:
The electrostatic force between two charged particles is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
r is the separation between the charges
If the distance between the charges is reduced to half,

So the new force will be

So, the force will quadruple.
Answer:
induced EMF = 240 V
and by the lenz's law direction of induced EMF is opposite to the applied EMF
Explanation:
given data
inductance = 8 mH
resistance = 5 Ω
current = 4.0 A
time t = 0
current grow = 4.0 A to 10.0 A
to find out
value and the direction of the induced EMF
solution
we get here induced EMF of induction is express as
E = - L
...................1
so E = - L 
put here value we get
E = - 8 ×

E = -40 × 6
E = -240
take magnitude
induced EMF = 240 V
and by the lenz's law we get direction of induced EMF is opposite to the applied EMF
Answer:
unmmmmmmmm I think the answerA