Try this solution, answers are marked with red colour.
To solve this problem it is necessary to apply the concepts related to transformers, that is to say passive electrical device that transfers electrical energy from one electrical circuit to one or more circuits.
From the mathematical definition we have that the relationship between the voltage of the first coil and the second coil is proportional to the number of loops of the first and second loop, that is:

Where
input voltage on the primary coil.
input voltage on the secondary coil.
number of turns of wire on the primary coil.
number of turns of wire on the secondary coil.
Replacing our values we have:



Replacing,


From the same relations of number of turns and the voltage of the first and second coil we also have the relation of electricity and voltage whereby:

Where
= Current Primary Coil
= Current secundary Coil
Therefore:



Therefore the maximum values for the secondary coil of the voltage is 410.56V and Current is 1.87A
Answer:
The person is on the Moon having a weight of 500 N. The acceleration of gravity on the Moon is approximately 1.6 m/s2. What is your his, which includes his space suit?
f= Force (of gravity)=500N
g=acceleration of gravity=1.6m/s^2
m=mass=312kg
m=f/a= 500N/1.6 m/s^2 = 500 (kg-m/1.6m/s^2) = 500/1.6kg = 312kg
his mass is 312kg
Answer:
The extreme difference between the hot chimney and the cold knife makes the chimney expand and contract so quickly it cracks.
Explanation:
Hope this helped!
Answer:
1. True
2. False
3. True
Explanation:
Newton's 2nd law states that the net force exerted on an object is equal to the product between the mass of the object and its acceleration:
(1)
where
is the net force on the object
m is its mass
a is the acceleration
Furthermore, we know that acceleration is defined as the rate of change of velocity:

So let's now analyize the three statements:
1. A net force causes velocity to change: TRUE. Net force (means non-zero) causes a non-zero acceleration, which means that the velocity of the object must change.
2. If an object has a velocity, then we can conclude that there is a net force on the object: FALSE. The fact that the object has a velocity does not imply anything about its acceleration: in fact, if its velocity is constant, then its acceleration is zero, which would mean that the net force on the object is zero. So this statement is not necessarly true.
3. Accelerations are caused by the presence of a net force: TRUE. This is directly implied by eq.(1): the presence of the net force results in the object having a non-zero acceleration.