The pressure exerted by the concrete cylinder is 2.60 pound/in².
We need to know about the pressure to solve this problem. Pressure is a unit that describes how much force is applied to a surface area. It can be determined as
P = F / A
where P is pressure, F is force and A is area.
From the question above, we know that
F = 375 pound
A = 144 in²
By substituting the given parameters, we can calculate the pressure
P = F / A
P = 375 / 144
P = 2.60 pound/in²
Thus, the pressure should be 2.60 pound/in².
Find more on pressure at: brainly.com/question/25965960
#SPJ4
8 x 10^8 = 800,000,000
In Scientific Notation, your goal is to get your the number you're multiplying by 10 (8 in this case) to be between 0 and 10. Therefore, you would NOT have 80 x 10^7 because 80 is not between 0 and 10.
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Answer:
When the volume increases or when the temperature decreases
Explanation:
The ideal gas equation states that:

where
p is the gas pressure
V is the volume
n is the number of moles of gas
R is the gas constant
T is the gas temperature
Assuming that we have a fixed amount of gas, so n is constant, we can rewrite the equation as

which means the following:
- Pressure is inversely proportional to the volume: this means that the pressure decreases when the volume increases
- Pressure is directly proportional to the temperature: this means that the pressure decreases when the temperature decreases