Answer:279.1 K
Explanation:
You'll be using Gay-Lussac's Law for this. P1/T1=P2/T2
I have a class for this, and one of the practice questions was formatted this way, so I used that format and substituted said numbers as needed
P1:67 Pa
P2:60 Pa
T1:250 K
T2:?
I really hope this helps!
Explanation:
covalent bond poor thermal conductivity
molecular compounds
metallic bond ductile
electron sea model
ionic bond crystalline
hard and brittle
Covalent compounds have the following properties:
- Gases and volatile liquids or low melting point solids
- Often insoluble in polar solvents
- Mainly non - conductors
- Have slow reactions
Metallic compounds:
- Have good malleability, ductility, electrical and thermal conductivity.
- A large sea of electron by jointly packed atoms.
- They are mostly in metals
- Accounts for the bulk of the physical properties displayed by metals
Ionic compounds:
- High melting and boiling point
- Soluble in polar liquids
- Conducts electricity in molten or aqueous forms.
- Mostly crystalline solids
- Usually hard and brittle
- Undergoes fast chemical reactions
learn more:
Covalent bonds brainly.com/question/5258547
Ionic bond brainly.com/question/6071838
#learnwithBrainly
Answer:
Prokaryotic is the answer!
Explanation:
I know this because, the nucleolus is absent in the image.
PLZ MARK AS BRAINLIEST! HOPE THIS HELPS! :)
ps: i have the same profile photo lol, love it!
You have to use Avogadro's number (6.02x10^23 molecules/mole) to find the number of moles each reactant starts off with.
moles of Fe and O₂:
12 atoms/(6.02x10^23 atoms/mole)=1.99x10^-23 mol Fe
6 molecules/(6.02x10^23 molecules/mole)=9.967x10^-24 mol <span>O₂
</span>Then you find the limiting reagent by finding how much product each given amount of reactant can make. Which ever one produces the least amount of product is the limiting reagent.
amount of Fe₂O₃ produced:
<span>(1.99x10^-23 mol Fe)x(2mol/4mol)= 9.967x10^-24mol Fe</span>₂O₃<span>
</span>(9.967x10^-24 mol O₂)x(2mol/3mol)= 6.645x10^-24 mol Fe₂O₃<span>
</span>since oxygen produces the leas amount of product, oxygen is the limiting reagent. since we know that oxygen is the limiting reagent we can use the amount of product formed with oxygen to find the amount of iron used.
6.645x10^-24 mol Fe₂O₃x(4mol/2mol)=1.329x10^-23 mol Fe consumed
<span> find the amount left over by subtracting the original amount of Fe by the amount consumed in the reaction.
</span>1.993x10^-23-1.329x10^-23= 6.645x10^-23mol Fe left
find the number of atoms by multiplying that by Avogadro's number.
<span>(6.645x10^-23mol)x(6.02x10^23 atoms/mol)=4 atoms
</span>therefore 4 atoms of Fe will be left over after the reaction happens.
I hope this helps.
Answer:
In the given chemical reaction:
Species Oxidized: I⁻
Species Reduced: Fe³⁺
Oxidizing agent: Fe³⁺
Reducing agent: I⁻
As the reaction proceeds, electrons are transferred from I⁻ to Fe³⁺
Explanation:
Redox reaction is a chemical reaction involving the simultaneous movement of electrons thereby causing oxidation of one species and reduction of the other species.
The chemical species that <u><em>gets reduced by gaining electrons </em></u><u>is called an </u><u><em>oxidizing agent</em></u>. Whereas, the chemical species that <u><em>gets oxidized by losing electrons </em></u><u>is called a </u><u><em>reducing agent</em></u><u>.</u>
Given redox reaction: 2Fe³⁺ + 2I⁻ → 2Fe²⁺ + I₂
<u>Oxidation half-reaction</u>: 2 I⁻ + → I₂ + 2 e⁻ ....(1)
<u>Reduction half-reaction</u>: [ Fe³⁺ + 1 e⁻ → Fe²⁺ ] × 2
⇒ 2 Fe³⁺ + 2 e⁻ → 2 Fe²⁺ ....(2)
In the given redox reaction, <u>Fe³⁺ (oxidation state +3) accepts electrons and gets reduced to Fe²⁺ (oxidation state +2) and I⁻ (oxidation state -1) loses electrons and gets oxidized to I₂ (oxidation state 0).</u>
<u>Therefore, Fe³⁺ is the oxidizing agent and I⁻ is the reducing agent and the electrons are transferred from I⁻ to Fe³⁺.</u>