Answer:
4.2 L
Explanation:
Use Boyle's Law and rearrange formula.
- Hope this helps! Please let me know if you need further explanation.
Volatile organic compounds can be detected by hydrogeologists in the field or labs because of the odor of the vapors emitted from the groundwater and/or soil samples.
<h3>What are volatile substances?</h3>
Volatile substances are substances which can easily vaporize or change to gaseous state.
Volatile substances can either be solids or liquids but are mostly liquids.
Example of volatile substances include ether, petrol, chocolate.
The presence of volatile substances can be detected by the gases they release which may have characteristic odors.
Therefore, volatile organic compounds can be detected by hydrogeologists in the field or labs because of the odor of the vapors emitted from the groundwater and/or soil samples.
Learn more about volatile compounds at: brainly.com/question/25403770
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
Answer is B.
As the diaphragm contracts and flattens, it increases the volume of the thorax where the lungs are located. This results in a decrease in pressure (Boyle’s Law, if you know it) that creates a pressure gradient from outside to inside. This is what causes air to move into the lungs.