Answer:
The ratio is 1.000 mol of iron to 1.500 mol of oxygen (Fe1O1.5). Finally, multiply the ratio by two to get the smallest possible whole number subscripts while still maintaining the correct iron-to-oxygen ratio: The empirical formula is Fe2O3.
Answer:
Explanation:
1) Vanadium (IV) → V⁺⁴
Carbonate → CO₃⁻²
So , Vanadium (IV) Carbonate = V₂(CO₃)₄ or V(CO₃)₂
2) Tin (II) = Sn⁺²
Nitrite = NO₂⁻
So, Tin (II) Nitrate = Sn(NO₂)₂
3) Cobalt (III) = Co⁺³
Oxide = O⁻²
So , Cobalt (III) Oxide = Co₂O₃
4) Titanium (II) = Tn⁺²
Acetate = CH₃COO⁻
So , Titanium (II) Acetate = Tn(CH₃COO)₂ or Tn(C₂H₃O₂)₂
5) Vanadium (V) = V⁺⁵
Sulfide = S⁻²
So , Vanadium (V) Sulfide = V₂S₅
6) Chromium (III) = Cr⁺³
Hydroxide = OH⁻
So , Chromium (III) Hydroxide = Cr(OH)₃
7) Lithium = Li⁺
Iodide = I⁻
So , Lithium Iodide = LiI
8) Lead (II) = Pb⁺²
Nitride = N⁻³
So , Lead (II) Nitride = Pb₃N₂
9) Silver = Ag⁺
Bromide = Br⁻
So , Silver Bromide = AgBr
Temperature change would be 112.6° C.
<u>Explanation:</u>
We can find the amount or heat absorbed or emitted during any reaction by finding the product of their mass, specific heat, and change in temperature of the metal.
Mass of the iron, m = 50.0 g
Amount of heat absorbed, q = 2500 J
Change in temperature, ΔT = ?
Specific heat of Iron, C = 0.444 J/g °C

Plugin the values and rearrange the equation to get the change in temperature as,


Answer:
you know you can use Quizlet
Explanation: