Answer:
Acceleration of the car will be 
Explanation:
We have given that car starts from rest so initial velocity of the car u = 0 m/sec
And car traveled 400 m in 10 sec
So distance traveled by car s = 400 m
Time taken to compete this distance t = 10 sec
We have to find the acceleration of the car
From second equation of motion we know that 
So 

So acceleration of the car will be 
No it shouldn't, a hypothesis doesn't need to be correct but must have an idea for why x variable effects y variable and have good reasoning. In the conclusion you should state if it's correct or not and explain why it's correct/incorrect and what answer you've determined from data.
<span>First draw a free-body diagram. Torque T = Force F x Distance d where force is the component of gravitational force g and d is the lever arm distance to the pivot point. Since the pivot point is at the back tire we subtract that from the length of the car resulting in d = 1.12 - 0.40 = 0.72 meters = d. We are interested in the perpendicular component of the force exerted on the car jack so use sin 8 degrees then T=1130 kg x 9.81 m/s^2 x sin(8 degrees) x0.72 m = 1,110.80 Newton-meters</span>
Answer:
0.09 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
From the question, expression for acceleration is given as
F' = ma
Using Pythagoras Theory,
√(F₁²+F₂²) = ma................... Equation 1
Where F₁ = Force of the First person on the boulder, F₂ = Force of the Second person on the boulder, F' = resultant force acting on the boulder, m = mass of the boulder, a = acceleration of the boulder.
make a the subject of the equation
a = √(F₁²+F₂²) /m................ Equation 2
Given: m = 825 kg, F₁ = 64 N, F₂ = 38 N,
Substitute into equation 2
a = [√(64²+38²)]/825
a = {√(5540)}/825
a = 74.43/825
a = 0.09 m/s²