Answer:
In space we feel weightlessness because the earth's gravity has less effect on us. The Earth's gravitational attraction at those altitudes is only about 11% less than it is at the Earth's surface. If you had a ladder that could reach as high as the shuttle's orbit, your weight would be 11% less at the top.
Explanation:
Hope this helps:)
A = .3*g = 2.94 m/s²
<span>t = v/a = 9/2.94 = 3.061 sec </span>
<span>W = E/t = ½mv²/t = ½*40*9²/3.061 = 529.2 watts</span>
By definition, we have to:
Newton's first law states that any object will remain in a state of rest or with a uniform rectilinear motion unless an external force acts on it.
Therefore, according to the first law of Newton, if the object is already in motion and has no force acting on it then, it will remain with a uniform rectilinear motion.
Answer:
The object will remain with a uniform rectilinear movement when the external force does not act on it.
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as

Where,
PE = Potential Energy
KE = Kinetic Energy

Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to


The rate of mass flow is,

Where,
= Density of water
A = Area of the hose 
The given radius is 0.83cm or
m, so the Area would be


We have then that,



Final the power of the pump would be,



Therefore the power of the pump is 57.11W