12.00 min = 0.2 hr
8.00 min = 0.15 hr
Total distance:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) + (20.0 km/hr) (0.2 hr)
= 8.25 km
Average speed:
(10.0 km/hr + 15.0 km/hr + 20.0 km/hr) / 3
= 15 km/hr
Change in position:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) - (20.0 km/hr) (0.2 hr)
= 0.25 km
Average velocity:
(10.0 km/hr + 15.0 km/hr - 20.0 km/hr) / 3
≈ 1.67 m/s
Answer:
I really hope this is right I think this is Diffuse I'm sorry if its worng
A single photon carries an energy equal to

where h is the Planck's constant and f is the frequency of the photon.
This means that the higher the frequency of the light, the higher the energy. Among the 5 different options mentioned by the problem, the light with highest frequency is ultraviolet, which has frequencies in the range [3-30] PHz, while visible light (red, blue, green) and infrared have lower frequency, so ultraviolet light has the highest energy per photon.
A. fixed volume, changeable shape.